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Introduction 

In what way will machine intelligence assist us as testers in the future? 

While we were discussing this matter for a while, we thought of the concept of self-learning and 

self-exploring testing tools. Below we sketch our ideas. And at the end of this article we call for you 

to explore this matter further with us! 

 

Testing Tools of today are mainly to take over the (often boring) job of test execution 

Test Automation usually automates test cases that have been previously compiled manually by the 

testers. These test cases have predefined expected outcomes. The tool verifies that the actual 

outcome matches the expected outcome. The test cases selected, aim to achieve a certain level 

of coverage of all possibilities. Changing the test object also means adjusting the test cases in the 

tool.The world of testing is now about to apply new, other types of automated testing tools. Tools 

that do not need to get instructions in advance, but independently explore an information system. 

 

 

 

An introduction to the self-learning and self-exploring tools of today 

The possibilities to have machines to learn autonomously have greatly increased. The world 

watched in astonishment how the self-learning AlphaGo defeated the Korean world champion of 



the game “Go” convincingly, 10 years earlier than expected. And now a computer has already won 

a lot of money from top players at the game of poker. The makers of AlphaGo, Google’s “DeepMind” 

also created another program that excels in self-learning and self-exploration. This program 

manages to investigate classic Atari games without any explanation, playing and learning it until it 

is played to perfection. As an example we choose the game breakout of which you see a screenshot 

below. 

 

 

 

The DeepMind program starts the game and initially has no idea what is happening. The concept 

of a moving ball which needs to be bounced back is unknown. The same goes for the idea that the 

pink pixels at the bottom of the screen together form an object that can be controlled, and that the 

points are scored by playing off the colored blocks. Everything is new, so everything needs to be 

explored and learned. 

 

This exploring and learning is done by playing the game time and time again. After 10 minutes of 

playing, the program will already have some skill in controlling the paddle. After 300 games, the 

program can play just as good as a human player could. And after 500 games, the program has 

found the best stragegy to win the game by making a hole at the side and let the ball bounce over 



the top row of blocks.With this tool other games can be learned as well. On Youtube you can find 

examples of Pacman and Super Mario. It’s played without explanation. With a single tool. 

 

Self-learning and self-exploring testing tools take the over the thinking 

Suppose we would not set this DeepMind tool to learn an Atari game, but an object that we want 

to test, such as a website. What could such a tool do? What could we achieve using the tool? Let 

us focus on what is achievable in the short term: input checks, layout verification, error handling, 

and here and there some tests of the consistency of values in two fields. The so-called syntactic 

and semantic tests. 

 

The tool would start clicking around without any prior knowledge, do some typing, drag the cursor 

and so on. It would detect input fields and enter all sorts of values. It would make random 

combinations of inputs and actions and then experience what the results are. It would identify trends 

and patterns and thus determine what is standard behavior. And once the tool knows what the 

standard behavior is, it can also recognize deviant behavior. After doing all its exploration, the tool 

can generate a report with a list of these anomalies. 

 

That is where we as human testers are still needed: to interpret the anomalies and to determine 

the difference between desired deviations and actual defects. Of course, the self-learning program 

will take this human input into consideration the next time, thus learning about desired behavior of 

the system. The next round of testing will result in a much shorter list of anomalies to interpret. 

 



As with the current day test automation, the strength of this concept is in repeating the test. At the 

next release of the test object, the tool will recognize what the changes are and again make no 

distinction between right and wrong. The human tester thus can assess both the desired changes 

as well as any regression defects. 

 

Besides, who says that this must be done by a professional tester? We can also ask other 

stakeholders such as customers, to evaluate the reports with the support and advice of the artificial 

intelligence. 

 

Can we still help the tool with anything? 

Above we limited ourselves to syntactic and semantic testing, but the move to automatic testing of 

processing logic and process flows is quite conceivable. Certainly if we help the tool a little by giving 

different ‘inputs’. Ultimately, the tool  can invent (almost) everything by itself after thousands of 

hours of exploring and learning. The main reason to supply some inputs is increasing the efficiency.  

 

Some examples: 

• We could supply test data, such as valid postal codes and correct existing addresses, the 

right format of telephone numbers and examples of existing usernames and passwords. 

• We could supply designs and requirement specifications, preferably in a structured 

format. The tool will then try to identify which input and output values are in this test base, 

and try to validate the test object against it. 

• We would, after a first round of tests, indicate which of the detected features we find most 

important, so that the tool puts its focus there in the next round of testing. 

 

In addition there is something that we, as professional testers would like to add: test design 

techniques. This allows us to aim for a specific coverage. These techniques are often not applied 

in practice, so it would help a lot if a tool would facilitate this. Moreover, because the tool can 

basically do an infinite number of tests, artificially intelligent tools themselves can also come up 

with new techniques, perhaps even better than we can think of as humans. Just think of the trick 

described above where the tool itself learned to play the most effective game of Breakout. The 

limitation currently is mainly the time it takes for the tool to try out the many possibilities. 

 

Can the tool help itself with anything? 

In addition to the human ‘inputs’ there is another very interesting “input”: the earlier tests of the tool 

itself. In this way, the tool can test much more efficiently during the next round of testing. Compare 



it to the 500th game of Breakout. The experience of the tool of course does not need to focus on 

just one test object. For example; if we have tested a website and we as human beings have 

indicated the type of variations we do not find desirable, at the second website the tool will reuse 

this experience. Think of quality characteristics like usability and accessibility. And if after some 

time we have tested (or actually explored) hundreds of websites and have had humans judging 

those (learning), then the tool recognizes general trends in expected behavior which the tool will 

take into account at the next test. Knowledge and experience about hundreds of test objects, fully 

available with the touch of a button. Will this be the end of the need for a professional functional 

tester’s knowledge, skill and years of experience?! 

 

How feasible is this concept? 

Let’s take a deep breath first. At present, self-learning and self-exploring testing tools still are 

fictitious. But all the necessary knowledge and techniques already exist at this moment. An 

important question of course is whether the investment in this type of testing tools outweighs the 

results. In particular the adoption of the creative thinking work of the human tester still sounds very 

futuristic, but the developments go very fast. 

 

The first step will be that the testing tools do some of the exploratory work and thus provide a basis 

on which the human tester can elaborate. But for the longer future, it is not inconceivable that this 

kind of self-learning and self-exploring tools will be able to determine the quality of an information 

system in such way that those involved will gain sufficient confidence to take the information system 

to use. 

 

Do you want to explore the future with us? 

We’d like to continue developing this concept, along with fellow testers who like to join us in thinking 

about this. The possibilities seem endless. We already think big, and still we’ll probably be surprised 

in the future. But there are plenty of obstacles to overcome. There’s plenty to discuss about this 

look into the future! Are you interested, let us know!! 

 

Furthermore, you may like to know that the code of the DeepMind program, to play Atari games, is 

publicly available on github. The programming language is C ++, so if you are familiar with this and 

want to contribute to this experiment, we want to hear from you! 

 


