
Testing with self-learning and self-
exploring testing tools
By Rik Marselis and Sander Mol, March 2017

Introduction

In what way will machine intelligence assist us as testers in the future?

While we were discussing this matter for a while, we thought of the concept of self-learning and

self-exploring testing tools. Below we sketch our ideas. And at the end of this article we call for you

to explore this matter further with us!

Testing Tools of today are mainly to take over the (often boring) job of test execution

Test Automation usually automates test cases that have been previously compiled manually by the

testers. These test cases have predefined expected outcomes. The tool verifies that the actual

outcome matches the expected outcome. The test cases selected, aim to achieve a certain level

of coverage of all possibilities. Changing the test object also means adjusting the test cases in the

tool.The world of testing is now about to apply new, other types of automated testing tools. Tools

that do not need to get instructions in advance, but independently explore an information system.

An introduction to the self-learning and self-exploring tools of today

The possibilities to have machines to learn autonomously have greatly increased. The world

watched in astonishment how the self-learning AlphaGo defeated the Korean world champion of

the game “Go” convincingly, 10 years earlier than expected. And now a computer has already won

a lot of money from top players at the game of poker. The makers of AlphaGo, Google’s “DeepMind”

also created another program that excels in self-learning and self-exploration. This program

manages to investigate classic Atari games without any explanation, playing and learning it until it

is played to perfection. As an example we choose the game breakout of which you see a screenshot

below.

The DeepMind program starts the game and initially has no idea what is happening. The concept

of a moving ball which needs to be bounced back is unknown. The same goes for the idea that the

pink pixels at the bottom of the screen together form an object that can be controlled, and that the

points are scored by playing off the colored blocks. Everything is new, so everything needs to be

explored and learned.

This exploring and learning is done by playing the game time and time again. After 10 minutes of

playing, the program will already have some skill in controlling the paddle. After 300 games, the

program can play just as good as a human player could. And after 500 games, the program has

found the best stragegy to win the game by making a hole at the side and let the ball bounce over

the top row of blocks.With this tool other games can be learned as well. On Youtube you can find

examples of Pacman and Super Mario. It’s played without explanation. With a single tool.

Self-learning and self-exploring testing tools take the over the thinking

Suppose we would not set this DeepMind tool to learn an Atari game, but an object that we want

to test, such as a website. What could such a tool do? What could we achieve using the tool? Let

us focus on what is achievable in the short term: input checks, layout verification, error handling,

and here and there some tests of the consistency of values in two fields. The so-called syntactic

and semantic tests.

The tool would start clicking around without any prior knowledge, do some typing, drag the cursor

and so on. It would detect input fields and enter all sorts of values. It would make random

combinations of inputs and actions and then experience what the results are. It would identify trends

and patterns and thus determine what is standard behavior. And once the tool knows what the

standard behavior is, it can also recognize deviant behavior. After doing all its exploration, the tool

can generate a report with a list of these anomalies.

That is where we as human testers are still needed: to interpret the anomalies and to determine

the difference between desired deviations and actual defects. Of course, the self-learning program

will take this human input into consideration the next time, thus learning about desired behavior of

the system. The next round of testing will result in a much shorter list of anomalies to interpret.

As with the current day test automation, the strength of this concept is in repeating the test. At the

next release of the test object, the tool will recognize what the changes are and again make no

distinction between right and wrong. The human tester thus can assess both the desired changes

as well as any regression defects.

Besides, who says that this must be done by a professional tester? We can also ask other

stakeholders such as customers, to evaluate the reports with the support and advice of the artificial

intelligence.

Can we still help the tool with anything?

Above we limited ourselves to syntactic and semantic testing, but the move to automatic testing of

processing logic and process flows is quite conceivable. Certainly if we help the tool a little by giving

different ‘inputs’. Ultimately, the tool can invent (almost) everything by itself after thousands of

hours of exploring and learning. The main reason to supply some inputs is increasing the efficiency.

Some examples:

• We could supply test data, such as valid postal codes and correct existing addresses, the

right format of telephone numbers and examples of existing usernames and passwords.

• We could supply designs and requirement specifications, preferably in a structured

format. The tool will then try to identify which input and output values are in this test base,

and try to validate the test object against it.

• We would, after a first round of tests, indicate which of the detected features we find most

important, so that the tool puts its focus there in the next round of testing.

In addition there is something that we, as professional testers would like to add: test design

techniques. This allows us to aim for a specific coverage. These techniques are often not applied

in practice, so it would help a lot if a tool would facilitate this. Moreover, because the tool can

basically do an infinite number of tests, artificially intelligent tools themselves can also come up

with new techniques, perhaps even better than we can think of as humans. Just think of the trick

described above where the tool itself learned to play the most effective game of Breakout. The

limitation currently is mainly the time it takes for the tool to try out the many possibilities.

Can the tool help itself with anything?

In addition to the human ‘inputs’ there is another very interesting “input”: the earlier tests of the tool

itself. In this way, the tool can test much more efficiently during the next round of testing. Compare

it to the 500th game of Breakout. The experience of the tool of course does not need to focus on

just one test object. For example; if we have tested a website and we as human beings have

indicated the type of variations we do not find desirable, at the second website the tool will reuse

this experience. Think of quality characteristics like usability and accessibility. And if after some

time we have tested (or actually explored) hundreds of websites and have had humans judging

those (learning), then the tool recognizes general trends in expected behavior which the tool will

take into account at the next test. Knowledge and experience about hundreds of test objects, fully

available with the touch of a button. Will this be the end of the need for a professional functional

tester’s knowledge, skill and years of experience?!

How feasible is this concept?

Let’s take a deep breath first. At present, self-learning and self-exploring testing tools still are

fictitious. But all the necessary knowledge and techniques already exist at this moment. An

important question of course is whether the investment in this type of testing tools outweighs the

results. In particular the adoption of the creative thinking work of the human tester still sounds very

futuristic, but the developments go very fast.

The first step will be that the testing tools do some of the exploratory work and thus provide a basis

on which the human tester can elaborate. But for the longer future, it is not inconceivable that this

kind of self-learning and self-exploring tools will be able to determine the quality of an information

system in such way that those involved will gain sufficient confidence to take the information system

to use.

Do you want to explore the future with us?

We’d like to continue developing this concept, along with fellow testers who like to join us in thinking

about this. The possibilities seem endless. We already think big, and still we’ll probably be surprised

in the future. But there are plenty of obstacles to overcome. There’s plenty to discuss about this

look into the future! Are you interested, let us know!!

Furthermore, you may like to know that the code of the DeepMind program, to play Atari games, is

publicly available on github. The programming language is C ++, so if you are familiar with this and

want to contribute to this experiment, we want to hear from you!

